organic compounds

18132 measured reflections

 $R_{\rm int} = 0.029$ 

3171 independent reflections

2843 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 3-(2-Furyl)-1-(3-nitrophenyl)prop-2-en-1one

## Shea-Lin Ng,<sup>a</sup> P. S. Patil,<sup>b</sup> Ibrahim Abdul Razak,<sup>a</sup> Hoong-Kun Fun,<sup>a</sup>\* H.B. Ramesh Babu<sup>b</sup> and S. M. Dharmaprakash<sup>b</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>b</sup>Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 19 April 2007; accepted 20 April 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.119; data-to-parameter ratio = 19.5.

In the title compound,  $C_{13}H_9NO_4$ , the dihedral angle between the benzene and furan rings is 31.63 (6)°. The nitro group is almost coplanar with the attached benzene ring. In the crystal structure, intermolecular  $C-H \cdots O$  hydrogen bonds link the molecules, forming chains along the *b* axis.

#### **Related literature**

For bond length data, see: Allen *et al.* (1987). For hydrogen bond motifs, see: Bernstein *et al.* (1995). For related structures, see: Patil, Dharmaprakash *et al.* (2006); Patil, Teh *et al.* (2006); Patil, Dharmaprakash *et al.* (2007); Patil, Teh *et al.* (2007); Kiran *et al.* (2007).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} C_{13} \mathrm{H_9NO_4} \\ M_r = 243.21 \\ \mathrm{Monoclinic}, \ P2_1/c \\ a = 6.2162 \ (1) \ \mathrm{\mathring{A}} \\ b = 26.6985 \ (5) \ \mathrm{\mathring{A}} \\ c = 7.0467 \ (2) \ \mathrm{\mathring{A}} \\ \beta = 111.625 \ (1)^\circ \end{array}$ 

 $V = 1087.18 \text{ (4) } \text{Å}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 0.11 \text{ mm}^{-1}$  T = 100.0 (1) K $0.54 \times 0.48 \times 0.25 \text{ mm}$ 

#### Data collection

Bruker SMART APEX2 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005)  $T_{min} = 0.867, T_{max} = 0.973$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.044$ | 163 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.119$               | H-atom parameters constrained                              |
| 5 = 1.04                        | $\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$  |
| 3171 reflections                | $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

|  | Hydrogen-bond | geometry | (Å, ° | ) |
|--|---------------|----------|-------|---|
|--|---------------|----------|-------|---|

| $D - H \cdots A$                           | $D-{\rm H}$  | $H \cdots A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
|--------------------------------------------|--------------|--------------|------------------------|---------------------------|
| $C5-H5A\cdots O2$<br>$C1-H1A\cdots O4^{i}$ | 0.93<br>0.93 | 2.48<br>2.36 | 2.807 (1)<br>3.073 (2) | 101<br>133                |
|                                            | 1 2          |              |                        |                           |

Symmetry code: (i)  $-x, y - \frac{1}{2}, -z + \frac{3}{2}$ .

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064. PSP thanks the DRDO, Government of India, for a Senior Research Fellowship (SRF).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2371).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Kiran, J., Mithun, A., Shivarama Holla, B., Shashikala, H. D., Umesh, G. & Chandrasekharan, K. (2007). Opt. Commun. 269, 235–240.
- Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.
- Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Narayana Rao, D. (2007). J. Cryst. Growth In the press.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, 02397–02398.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, 02122–02123.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o2693 [doi:10.1107/S1600536807019782]

## 3-(2-Furyl)-1-(3-nitrophenyl)prop-2-en-1-one

## S.-L. Ng, P. S. Patil, I. A. Razak, H.-K. Fun, H. B. R. Babu and S. M. Dharmaprakash

## Comment

Many chalcone derivatives exhibit non-linear optical properties (Patil, Dharmaprakash *et al.*, 2006; Patil, Dharmaprakash *et al.*, 2007; Patil, Teh *et al.*, 2007; John Kiran *et al.*, 2007). We report here the structure of the title compound, (I) (Fig. 1), which crystallizes in a centrosymmetric space group and this precludes second-order non-linear optical properties.

Bond lengths and angles in (I) display normal values (Allen *et al.*, 1987), comparable to those of a related structure (Patil, Teh *et al.*, 2006). The molecule is slightly twisted about the C7—C8 bond; the diheral angle between the benzene (C8—C13) and furan (O1/C1-4) rings is 31.63 (6)°. The nitro group at C10 is almost coplanar with the attached benzene ring, with a O3—N1—C10—C9 torsion angle of 4.42 (15)°.

An intramolecular C5—H5A···O2 hydrogen bond (Table 1 and Figure 1) generates an S(5) ring motif (Bernstein *et al.*, 1995). In the crystal structure, the molecules are linked by intermolecular C1—H1A···O4<sup>i</sup> interactions (Table 1) into infinite chains along the *b* axis (Fig. 2).

## **Experimental**

An aqueous solution of sodium hydroxide (5%, 5 ml) was added with stirring (2 h) to a solution of 2-furfuraldehyde (0.01 mol) and 3-nitroacetophenone (0.01 mol) in methanol (60 ml) at room temperature. The reaction mixture was then poured on to ice-cold water. The precipitate that formed was filtered off, dried and recrystallized from acetone. Crystals suitable for single-crystal X-ray diffraction experiments were grown by slow evaporation of an acetone solution at room temperature.

## Refinement

H atoms were placed in calculated positions and constrained to ride on their carrier atoms, with C—H = 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ .

## **Figures**



Figure 1 The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed line indicates a hydrogen bond. Figure 2 The crystal packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines.

## 3-(2-furyl)-1-(3-nitrophenyl)prop-2-en-1-one

## Crystal data

C<sub>13</sub>H<sub>9</sub>NO<sub>4</sub>  $M_r = 243.21$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 6.2162 (1) Å b = 26.6985 (5) Å c = 7.0467 (2) Å  $\beta = 111.625$  (1)° V = 1087.18 (4) Å<sup>3</sup> Z = 4  $F_{000} = 504$   $D_x = 1.486 \text{ Mg m}^{-3}$ Mo Ka radiation  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7407 reflections  $\theta = 3.1-30.0^{\circ}$   $\mu = 0.11 \text{ mm}^{-1}$  T = 100.0 (1) KBlock, colourless  $0.54 \times 0.48 \times 0.25 \text{ mm}$ 

#### Data collection

| Bruker SMART APEX2 CCD area-detector diffractometer         | 3171 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 2843 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.029$                  |
| Detector resolution: 8.33 pixels mm <sup>-1</sup>           | $\theta_{\text{max}} = 30.0^{\circ}$   |
| T = 100.0(1)  K                                             | $\theta_{\min} = 3.1^{\circ}$          |
| ω scans                                                     | $h = -8 \rightarrow 8$                 |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2005) | $k = -37 \rightarrow 37$               |
| $T_{\min} = 0.867, T_{\max} = 0.973$                        | $l = -9 \rightarrow 6$                 |
| 18132 measured reflections                                  |                                        |

## Refinement

Refinement on  $F^2$ 

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.119$ 

S = 1.04

3171 reflections

163 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0601P)^2 + 0.4848P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} = 0.001$   $\Delta\rho_{max} = 0.60 \text{ e } \text{Å}^{-3}$   $\Delta\rho_{min} = -0.31 \text{ e } \text{Å}^{-3}$ Extinction correction: none

## Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x             | У            | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|--------------|--------------|---------------------------|
| 01   | 0.07026 (15)  | -0.15417 (3) | 0.84028 (14) | 0.0257 (2)                |
| O2   | 0.57685 (14)  | -0.01469 (3) | 0.74585 (14) | 0.02326 (19)              |
| O3   | 0.47514 (17)  | 0.15705 (3)  | 0.49383 (16) | 0.0291 (2)                |
| O4   | 0.23696 (16)  | 0.20552 (3)  | 0.56597 (15) | 0.0274 (2)                |
| N1   | 0.31969 (17)  | 0.16410 (3)  | 0.55825 (15) | 0.0202 (2)                |
| C1   | 0.0349 (2)    | -0.20133 (5) | 0.8965 (2)   | 0.0295 (3)                |
| H1A  | -0.1086       | -0.2142      | 0.8848       | 0.035*                    |
| C2   | 0.2345 (3)    | -0.22679 (4) | 0.97100 (19) | 0.0286 (3)                |
| H2A  | 0.2546        | -0.2594      | 1.0205       | 0.034*                    |
| C3   | 0.4109 (2)    | -0.19372 (4) | 0.95922 (19) | 0.0261 (3)                |
| H3A  | 0.5677        | -0.2008      | 0.9981       | 0.031*                    |
| C4   | 0.30335 (19)  | -0.14976 (4) | 0.87972 (17) | 0.0190 (2)                |
| C5   | 0.39115 (19)  | -0.10293 (4) | 0.83949 (16) | 0.0193 (2)                |
| H5A  | 0.5476        | -0.1014      | 0.8598       | 0.023*                    |
| C6   | 0.26585 (19)  | -0.06104 (4) | 0.77482 (17) | 0.0196 (2)                |
| H6A  | 0.1081        | -0.0612      | 0.7498       | 0.024*                    |
| C7   | 0.37869 (18)  | -0.01487 (4) | 0.74362 (16) | 0.0178 (2)                |
| C8   | 0.24853 (17)  | 0.03362 (4)  | 0.71599 (16) | 0.0166 (2)                |
| C9   | 0.33063 (17)  | 0.07452 (4)  | 0.63862 (16) | 0.0163 (2)                |
| H9A  | 0.4520        | 0.0707       | 0.5926       | 0.020*                    |
| C10  | 0.22716 (18)  | 0.12077 (4)  | 0.63202 (16) | 0.0172 (2)                |
| C11  | 0.04387 (19)  | 0.12809 (4)  | 0.69681 (18) | 0.0206 (2)                |
| H11A | -0.0214       | 0.1596       | 0.6918       | 0.025*                    |
| C12  | -0.03893 (19) | 0.08711 (5)  | 0.76911 (18) | 0.0223 (2)                |
| H12A | -0.1627       | 0.0910       | 0.8119       | 0.027*                    |
| C13  | 0.06153 (18)  | 0.04004 (4)  | 0.77829 (17) | 0.0199 (2)                |
| H13A | 0.0036        | 0.0127       | 0.8262       | 0.024*                    |
|      |               |              |              |                           |
|      | . 07          |              |              |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

Atomic displacement parameters  $(Å^2)$ 

| $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
|----------|----------|----------|----------|----------|----------|
|          |          |          |          |          |          |

# supplementary materials

| 01  | 0.0266 (4) | 0.0177 (4) | 0.0336 (5) | -0.0053 (3) | 0.0119 (4) | 0.0002 (3)  |
|-----|------------|------------|------------|-------------|------------|-------------|
| O2  | 0.0215 (4) | 0.0196 (4) | 0.0307 (4) | -0.0001 (3) | 0.0119 (3) | 0.0027 (3)  |
| O3  | 0.0332 (5) | 0.0201 (4) | 0.0434 (5) | 0.0002 (3)  | 0.0251 (4) | 0.0029 (4)  |
| O4  | 0.0322 (5) | 0.0142 (4) | 0.0361 (5) | 0.0035 (3)  | 0.0130 (4) | -0.0011 (3) |
| N1  | 0.0226 (4) | 0.0147 (4) | 0.0233 (5) | -0.0002 (3) | 0.0082 (4) | -0.0003 (3) |
| C1  | 0.0397 (7) | 0.0187 (5) | 0.0345 (7) | -0.0093 (5) | 0.0188 (6) | -0.0014 (4) |
| C2  | 0.0466 (7) | 0.0166 (5) | 0.0233 (5) | -0.0043 (5) | 0.0136 (5) | -0.0004 (4) |
| C3  | 0.0334 (6) | 0.0188 (5) | 0.0241 (5) | 0.0034 (4)  | 0.0083 (5) | -0.0020 (4) |
| C4  | 0.0226 (5) | 0.0164 (5) | 0.0180 (5) | -0.0024 (4) | 0.0074 (4) | -0.0016 (4) |
| C5  | 0.0229 (5) | 0.0172 (5) | 0.0171 (5) | -0.0040 (4) | 0.0066 (4) | -0.0020 (4) |
| C6  | 0.0199 (5) | 0.0176 (5) | 0.0194 (5) | -0.0046 (4) | 0.0049 (4) | 0.0001 (4)  |
| C7  | 0.0200 (5) | 0.0158 (4) | 0.0164 (5) | -0.0025 (4) | 0.0052 (4) | 0.0001 (3)  |
| C8  | 0.0162 (4) | 0.0161 (4) | 0.0161 (4) | -0.0023 (3) | 0.0045 (3) | -0.0007 (3) |
| C9  | 0.0161 (4) | 0.0154 (4) | 0.0177 (4) | -0.0013 (3) | 0.0065 (4) | -0.0014 (3) |
| C10 | 0.0178 (4) | 0.0149 (4) | 0.0186 (5) | -0.0012 (3) | 0.0063 (4) | -0.0008 (3) |
| C11 | 0.0187 (5) | 0.0203 (5) | 0.0221 (5) | 0.0023 (4)  | 0.0069 (4) | -0.0024 (4) |
| C12 | 0.0170 (4) | 0.0285 (6) | 0.0231 (5) | -0.0005 (4) | 0.0094 (4) | -0.0023 (4) |
| C13 | 0.0181 (4) | 0.0228 (5) | 0.0188 (5) | -0.0041 (4) | 0.0069 (4) | -0.0002 (4) |
|     |            |            |            |             |            |             |

Geometric parameters (Å, °)

| O1—C1     | 1.3618 (14) | C5—H5A       | 0.93        |
|-----------|-------------|--------------|-------------|
| O1—C4     | 1.3761 (14) | C6—C7        | 1.4744 (14) |
| O2—C7     | 1.2261 (13) | С6—Н6А       | 0.93        |
| O3—N1     | 1.2242 (13) | С7—С8        | 1.5008 (15) |
| 04—N1     | 1.2291 (12) | C8—C13       | 1.3963 (15) |
| N1—C10    | 1.4695 (14) | C8—C9        | 1.3982 (14) |
| C1—C2     | 1.341 (2)   | C9—C10       | 1.3853 (14) |
| C1—H1A    | 0.93        | С9—Н9А       | 0.93        |
| C2—C3     | 1.4335 (18) | C10—C11      | 1.3886 (15) |
| C2—H2A    | 0.93        | C11—C12      | 1.3838 (16) |
| C3—C4     | 1.3646 (16) | C11—H11A     | 0.93        |
| С3—НЗА    | 0.93        | C12—C13      | 1.3940 (16) |
| C4—C5     | 1.4338 (15) | C12—H12A     | 0.93        |
| C5—C6     | 1.3430 (15) | C13—H13A     | 0.93        |
| C1—O1—C4  | 106.94 (10) | O2—C7—C6     | 122.16 (10) |
| O3—N1—O4  | 123.71 (10) | O2—C7—C8     | 119.30 (9)  |
| O3—N1—C10 | 118.40 (9)  | C6—C7—C8     | 118.50 (9)  |
| O4—N1—C10 | 117.89 (9)  | C13—C8—C9    | 119.51 (10) |
| C2-C1-O1  | 110.92 (11) | C13—C8—C7    | 122.46 (10) |
| C2—C1—H1A | 124.5       | C9—C8—C7     | 117.87 (9)  |
| O1—C1—H1A | 124.5       | C10—C9—C8    | 118.53 (10) |
| C1—C2—C3  | 106.41 (11) | С10—С9—Н9А   | 120.7       |
| C1—C2—H2A | 126.8       | С8—С9—Н9А    | 120.7       |
| С3—С2—Н2А | 126.8       | C9—C10—C11   | 122.78 (10) |
| C4—C3—C2  | 106.51 (11) | C9—C10—N1    | 118.44 (9)  |
| С4—С3—Н3А | 126.7       | C11—C10—N1   | 118.76 (9)  |
| С2—С3—Н3А | 126.7       | C12—C11—C10  | 118.12 (10) |
| C3—C4—O1  | 109.22 (10) | C12—C11—H11A | 120.9       |

| C3—C4—C5     | 131.82 (11)  | C10-C11-H11A    | 120.9        |
|--------------|--------------|-----------------|--------------|
| O1—C4—C5     | 118.94 (10)  | C11—C12—C13     | 120.58 (10)  |
| C6—C5—C4     | 125.31 (10)  | C11—C12—H12A    | 119.7        |
| С6—С5—Н5А    | 117.3        | C13—C12—H12A    | 119.7        |
| С4—С5—Н5А    | 117.3        | C12—C13—C8      | 120.45 (10)  |
| C5—C6—C7     | 119.91 (10)  | C12—C13—H13A    | 119.8        |
| С5—С6—Н6А    | 120.0        | C8—C13—H13A     | 119.8        |
| С7—С6—Н6А    | 120.0        |                 |              |
| C4—O1—C1—C2  | 0.47 (15)    | C6—C7—C8—C9     | -164.92 (10) |
| O1—C1—C2—C3  | -0.80 (15)   | C13—C8—C9—C10   | 1.92 (15)    |
| C1—C2—C3—C4  | 0.82 (14)    | C7—C8—C9—C10    | -173.42 (9)  |
| C2—C3—C4—O1  | -0.55 (13)   | C8—C9—C10—C11   | -0.74 (16)   |
| C2—C3—C4—C5  | 177.65 (12)  | C8—C9—C10—N1    | 177.61 (9)   |
| C1—O1—C4—C3  | 0.07 (13)    | O3—N1—C10—C9    | 4.42 (15)    |
| C1—O1—C4—C5  | -178.39 (10) | O4—N1—C10—C9    | -175.18 (10) |
| C3—C4—C5—C6  | -174.41 (12) | O3—N1—C10—C11   | -177.16 (10) |
| O1—C4—C5—C6  | 3.64 (17)    | O4—N1—C10—C11   | 3.24 (15)    |
| C4—C5—C6—C7  | 178.59 (10)  | C9—C10—C11—C12  | -0.58 (17)   |
| C5—C6—C7—O2  | 10.81 (17)   | N1-C10-C11-C12  | -178.93 (10) |
| C5—C6—C7—C8  | -166.91 (10) | C10-C11-C12-C13 | 0.72 (17)    |
| O2—C7—C8—C13 | -157.90 (11) | C11—C12—C13—C8  | 0.47 (17)    |
| C6—C7—C8—C13 | 19.89 (15)   | C9—C8—C13—C12   | -1.81 (16)   |
| O2—C7—C8—C9  | 17.30 (15)   | C7—C8—C13—C12   | 173.30 (10)  |
|              |              |                 |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|--------------------------|-------------|--------------|--------------|------------|
| С5—Н5А…О2                | 0.93        | 2.48         | 2.807 (1)    | 101        |
| C1—H1A···O4 <sup>i</sup> | 0.93        | 2.36         | 3.073 (2)    | 133        |
|                          |             |              |              |            |

Symmetry codes: (i) -x, y-1/2, -z+3/2.





Fig. 2